Well it’s time for part 4 of our mini-series outlining how to create a program to generate performance reports in nice, fancy looking HTML format that we can render in our browser and interact with (to a certain extent). The previous post can be found here. If you copy and paste the last iteration of the code for “main.py” and “template.html” from the last post into your own local files and recreate the folder and file structure outline in part 1 (which can be found here), then you should be ready to follow on from here pretty much.
So I promised at the end of the last post that I would stop adding random charts and tables with additional KPIs and equity curves and what not, and try to add a bit of functionality that one may actually find useful even if it weren’t part of this whole specific performance report creation tutorial. I know many people are interested in the concept of Monte Carlo analysis and the insights it can offer above and beyond those statistics and visuals created from the actual return series of the investment/trading strategy under inspection.